What Will Seismic Be Like in 2012?

Future Holds Clearer Vision

Current trends in seismic technology continue to point the way to future research and development efforts that run the gamut from health, safety and environmental issues to data management to seismic resolution.

That's the message of Ian Jack, a distinguished advisor with BP, who will present the paper "The Seismic Method 10 Years Ahead" at the AAPG International Conference and Exhibition October 27-30 in Cairo.

"One of the main trends, of course, in the last five to 10 years is reservoir geoscience," Jack said, "and that brings with it the need for much better resolution, because seismic resolution at the reservoir level is typically quite bad, particularly in the vertical sense. Resolution is nowhere near as good as one needs to map the facies and subtleties of the geology of a reservoir.

"So," he continued, "there has been a real push in resolution that has resulted in some interesting improvements, and if you extrapolate that over the next several years there are techniques coming along today that will really prove their worth."

Jack noted that the step function improvement in seismic resolution will come from a combination of acquisition and data processing methodology.

In the acquisition arena, for example, ocean bottom cable technology will be critical to improving resolution.

"On the seabed the environment is quieter, giving you the potential for higher quality data through better signal to noise ratio and improved bandwidth of the data," he said.

"In addition, when you put cables on the ocean floor you can measure the particle motion as well as the pressure changes, as opposed to towed cables that simply measure the pressure arrivals through the water," he said. "The particle motion that is possible on the seabed along with pressure changes provide additional information that improves the processing stages and thereby improves the overall data quality."

Since OBC techniques have not been fully exploited, Jack sees great opportunities for the technology in terms of data resolution — but researchers must continue to evolve ocean bottom systems capable of operating in deeper waters and at competitive prices. Currently OBC surveys are typically five times the cost of a towed cable survey.

Please log in to read the full article

Current trends in seismic technology continue to point the way to future research and development efforts that run the gamut from health, safety and environmental issues to data management to seismic resolution.

That's the message of Ian Jack, a distinguished advisor with BP, who will present the paper "The Seismic Method 10 Years Ahead" at the AAPG International Conference and Exhibition October 27-30 in Cairo.

"One of the main trends, of course, in the last five to 10 years is reservoir geoscience," Jack said, "and that brings with it the need for much better resolution, because seismic resolution at the reservoir level is typically quite bad, particularly in the vertical sense. Resolution is nowhere near as good as one needs to map the facies and subtleties of the geology of a reservoir.

"So," he continued, "there has been a real push in resolution that has resulted in some interesting improvements, and if you extrapolate that over the next several years there are techniques coming along today that will really prove their worth."

Jack noted that the step function improvement in seismic resolution will come from a combination of acquisition and data processing methodology.

In the acquisition arena, for example, ocean bottom cable technology will be critical to improving resolution.

"On the seabed the environment is quieter, giving you the potential for higher quality data through better signal to noise ratio and improved bandwidth of the data," he said.

"In addition, when you put cables on the ocean floor you can measure the particle motion as well as the pressure changes, as opposed to towed cables that simply measure the pressure arrivals through the water," he said. "The particle motion that is possible on the seabed along with pressure changes provide additional information that improves the processing stages and thereby improves the overall data quality."

Since OBC techniques have not been fully exploited, Jack sees great opportunities for the technology in terms of data resolution — but researchers must continue to evolve ocean bottom systems capable of operating in deeper waters and at competitive prices. Currently OBC surveys are typically five times the cost of a towed cable survey.

"That's a substantial difference," he said, "but techniques tend to come down in price as they mature — and we in the industry fully expect that to happen with OBC technology."

The Checklist

Jack sees other important seismic technology developments — and needs — over the next 10 years, including:

➤ Downhole geophysics.

"New technology is just now beginning to see the light of day, and I see huge improvements in the coming years," he said. In the past, downhole geophysics has not been user friendly because you have to stop whatever you are doing in the well to run the geophysical survey and that is not efficient.

"Researchers are working to build systems that can send signals up on demand," he said. "That will be the breakthrough that encourages a multitude of downhole measurements."

This pushes resolution as well as other insights, and Jack said this will aid visibility on pressure and fluid changes in the reservoir.

"This goes hand in hand with improved resolution, because good visibility on pressure and fluid changes in the reservoir is only possible with better resolution," he said. "Visibility means being able to see what's happening in the reservoir so you can, for example, steer a waterflood.

"This information will allow operators to manage their reservoirs better without splitting infinitives, and maximize flow rates and improve overall recovery."

➤ Computer power and visualization.

"Computer technology has really enabled the analysis and interpretation processes to achieve an order of magnitude of improvement over the last 10 to 15 years and that will continue," he said.

"We can anticipate huge improvements in this area if the past is any indicator, because there is no apparent slowdown in computer system progress. For example, technology that maps out structures with a minimal amount of steering will be possible in the future."

➤ Advances in visualization and interpretation methodology.

Enormous inroads have been made in the last several years, and this trend will accelerate.

"All of our offices around the world now have these large, dark visualization rooms where a whole team of people can gather to study huge amounts of data at great speeds on surround visualization screens," Jack said. "In addition to improving the interpretation process, visualization technology promotes the integrated-team concept within oil companies. Drilling engineers can work with geologists and geophysicists on seismic data in a format that is understandable to everyone.

"If you look at the incredible advancements in this technology in just the last 18 months you can see the huge potential for the future," he added. "The technology is now becoming widely used and is available to companies of all sizes."

➤ Data management.

Data volumes are getting larger and they are gathered more frequently, Jack said, so the rate of data with time is increasing very rapidly.

"If we look at how our data is managed within oil companies you find that each discipline's platform is generally inaccessible to other scientists," he said. "The platforms and software systems are all disparate, making it very difficult to access data. Some companies claim to spend as much as 25 percent of their technical time just finding data, and this has long been recognized as a problem within the industry.

"Research and development of retrieval systems that are common between different disciplines are breakthrough technologies in practice, because they have never been available, or have not survived in a hardware or software format sense," he continued. "Generally speaking, Web-enabled technologies are having a big impact at our company. An integrated, automated environment, or the e-field, is coming of age. Today you can sit in your office and watch the same dials the guys on the platforms or drilling rigs are watching — all in real time via an Internet-based system."

➤ Data mining, which is another important aspect of data management.

The ability to find common factors or systematic trends in data stored by different people and different disciplines is important, Jack said. Mining a multitude of data sets for common features or connections between various data sets is relatively old in concept but new in practice, and it will increase the value of the stored data.

"There's a tremendous amount of opportunity for data mining — the ability to look for patterns in disparate datasets is something we have never been able to do before," he said.

"For example, just recently we discovered evidence of a buried asteroid impact crater. With data mining technology it would be possible to search all of our seismic data looking for that same type of affect on the data."

➤ Advancements in health, safety and environment.

"Seismic operations historically have not always been the safest places to be — we have had accidents," he said. "This is an issue that's been highlighted in the last 10 years, and the industry is making strides to improve its record. That effort will continue, and I bring it up because it is a central feature of most operating companies and contractors. "

Environmentally, advancements in electronics will be the key in the future.

"We are producing systems today that you can put in place with minimal damage," he said, "particularly with land seismic, where, for example, we have virtually eliminated tree cutting, which we used to do extensively."

Improvements in electronics will allow the industry to continue to miniaturize and reduce the weight and impact of equipment, he said.

Many of these HSE advancements will help land seismic catch up with marine applications in the next 10 years, according to Jack.

"Marine seismic is reasonably easy to organize, reasonably easy, cheap and quick and reasonably good quality. There is no big environmental affect and it is generally safe," he said. "But land seismic is definitely not in that category. Data are acquired very slowly and painfully onshore with lots of misery in organizing, permitting, and acquiring the surveys.

"For years we have humped very expensive, heavy equipment over mountains and other terrains with great difficulty — it is certainly not a user friendly operation," he said. "That needs to change … This is where electronics comes in."

He cited consumer electronics as an example: "You can buy your child a Sony Walkman these days that costs around $35, and it is so small they can put it in their pocket," he said. "If they sit on it and it breaks, you don't repair it — you throw it away, and at that price nobody is particularly bothered by it.

"It is time to see those giant leaps in electronics in our industry, and my view is we are due for a big change."

You may also be interested in ...